[1]王宏宇,陈冬梅,王慧.基于低秩非局部稀疏表示的图像去噪模型[J].燕山大学学报,2017,41(3):272-277.[doi:10.3969/j.issn.1007-791X.2017.03.011]
 WANG Hongyu,CHEN Dongmei,WANG Hui.Image denoising model based on low rank and nonlocal sparse representation[J].Journal of YanShan University,2017,41(3):272-277.[doi:10.3969/j.issn.1007-791X.2017.03.011]
点击复制

基于低秩非局部稀疏表示的图像去噪模型
分享到:

《燕山大学学报》[ISSN:1007-791X/CN:13-1219/N]

卷:
41
期数:
2017年第3期
页码:
272-277
栏目:
信息与计算机技术
出版日期:
2017-05-31

文章信息/Info

Title:
Image denoising model based on low rank and nonlocal sparse representation
文章编号:
1007-791X(2017)03-0272-06
作者:
王宏宇1*陈冬梅1王慧2
1.辽宁行政学院 信息中心,辽宁 沈阳 110161;2.沈阳农业大学 信息与电气工程学院,辽宁 沈阳 110866
Author(s):
WANG Hongyu1CHEN Dongmei1WANG Hui2
1.Information Centre,Liaoning Academy of Governance,Shenyang,Liaoning 110161,China;2.School of Information and Electronic Engineering,Shenyang Agricultural University,Shenyang,Liaoning 110866,China
关键词:
非局部相似稀疏表示高斯噪声低秩
Keywords:
non-local similaritysparse representationGaussian noiselow rank
分类号:
TP391
DOI:
10.3969/j.issn.1007-791X.2017.03.011
文献标志码:
A
摘要:
在去除加性高斯白噪声的过程中,为克服图像失真,提高图像视觉质量,使图像之间联系更加密切,本文提出了一种基于低秩非局部稀疏表示的去噪算法模型。在该模型中,首先通过PCA方法线训练字典得到稀疏字典集,然后用奇异值分解求解低秩问题,最后用欧拉-拉格朗日方法得到去噪图像的能量泛函,从而重构图像。仿真实验结果表明,提出的新算法不仅能克服图像失真,改善图像视觉质量,还提高了峰值信噪比和图像相似度。
Abstract:
For removal additive white Gaussian noise,in order to overcome distortion of the image and improve the visual quality of iamge,especially making close between the information of the image,a denoising algorithm based on low rank and sparse representation is proposed in this paper.In this model,first it is using PCA ways to train online dictionary that we can get sparse dictionary set,and then it is used to solve the low rank problem with singular value decomposition.Finally,it is using the Euler Lengrand way to the denoising image for energy function,so we can reconstruct denoised image.A lot of experiments show that the proposed algorithm can not only overcome the image distortion and improve quality of image,but also have a high peak signal to noise ratio and image similarity.

相似文献/References:

[1]李志星,陈书贞,周建华,等.基于Gabor小波能量子带分块的稀疏表示人脸识别[J].燕山大学学报,2013,(1):068.[doi:10.3969/j.issn.1007-791X.2013.01.012]
 LI Zhi-xing,CHEN Shu-zhen,ZHOU Jian-hua,et al.Sparse representation for face recognition based on partitioning energy sub-band of Gabor wavelet[J].Journal of YanShan University,2013,(3):068.[doi:10.3969/j.issn.1007-791X.2013.01.012]
[2]蔡德生,练秋生.基于字典稀疏表示和梯度稀疏的图像盲去模糊[J].燕山大学学报,2013,(4):347.[doi:10.3969/j.issn.1007-791X.2013.04.009]
 CAI De-sheng,LIAN Qiu-sheng.Blind image deblurring based on dictionary sparse representation and sparse gradient[J].Journal of YanShan University,2013,(3):347.[doi:10.3969/j.issn.1007-791X.2013.04.009]
[3]陈书贞,李光耀,练秋生.结合图像的局部相关性及非局部相似性的多尺度分块压缩感知[J].燕山大学学报,2013,(6):547.[doi:10.3969/j.issn.1007-791X.2013.06.012]
 CHEN Shu-zhen,LI Guang-yao,LIAN Qiu-sheng.Multiscale block compressed sensing by combing image local correlation and nonlocal similarity[J].Journal of YanShan University,2013,(3):547.[doi:10.3969/j.issn.1007-791X.2013.06.012]
[4]李志全,马 莹,郭士亮,等.基于双层混合字典学习的图像超分辨率复原[J].燕山大学学报,2014,(3):233.[doi:10.3969/j.issn.1007-791X.2014.03.008]
 LI Zhi-quan,MA Ying,GUO Shi-liang,et al.Image super-resolution recovery based on dual-mixed dictionary learning[J].Journal of YanShan University,2014,(3):233.[doi:10.3969/j.issn.1007-791X.2014.03.008]
[5]胡春海*,张凯翔,范长德.基于稀疏表示分类行人检测的二级检测算法[J].燕山大学学报,2016,(1):066.[doi:10.3969/j.issn.1007-791X.2016.01.011]
 HU Chun-hai,ZHANG Kai-xiang,FAN Chang-de.Secondary detection algorithm of pedestrian detection based on sparse representation classification[J].Journal of YanShan University,2016,(3):066.[doi:10.3969/j.issn.1007-791X.2016.01.011]

备注/Memo

备注/Memo:
收稿日期:2017-01-09        责任编辑:孙峰
基金项目:国家自然科学基金资助项目(61673281)
作者简介:*王宏宇(1971-),男,辽宁沈阳人,硕士,副教授,主要研究方向为计算机应用技术、网络安全,Email:wanghongyu_2000@sina.com
更新日期/Last Update: 2017-07-07